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been recently obtained using Monte Carlo methods and neural networks as universal, un-

biased interpolants for the unknown functional dependence. In this work the same meth-

ods are applied to obtain a parametrization of polarized Deep Inelastic Scattering (DIS)

structure functions. The Monte Carlo approach provides a bias-free determination of the

probability measure in the space of structure functions, while retaining all the information

on experimental errors and correlations. In particular the error on the data is propa-

gated into an error on the structure functions that has a clear statistical meaning. We

present the application of this method to the parametrization from polarized DIS data

of the photon asymmetries Ap
1 and Ad

1 from which we determine the structure functions

gp
1(x,Q2) and gd

1(x,Q2), and discuss the possibility to extract physical parameters from

these parametrizations. This work can be used as a starting point for the determination

of polarized parton distributions.
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1 Introduction

In QCD the description of scattering processes at large momentum transfer (Q2 ≫ Λ2
QCD)

involving (polarized) hadrons in the initial state is based on the factorization theorem.

The latter allows a separation between the high-energy dynamics, described by coefficient

functions which are calculable in perturbative QCD, from low-energy, non-perturbative ef-

fects, binding partons into hadrons, which are encoded into (polarized) parton distribution

functions (PDFs).

The growth in statistics and increase in precision of data from experiments involving

polarized hadrons scattering calls for a more accurate determination of polarized PDFs

and their errors. A crucial problem in this respect is the determination of the uncertainty

on a function (i.e. a probability measure on a space of functions) from a finite set of

experimental data points. In the standard PDF extraction approach to the problem the

infinite-dimensional space of continuous functions is mapped into a finite-dimensional space

of parameters by choosing a particular basis in the space of functions and truncating the

basis to a finite number of elements. This procedure entails some degree of arbitrariness.

Any sensible choice must strike a balance between two competing requirements: on the

one hand a small number of parameters introduces a bias in the determination of both

the functional form and the errors, as the chosen parametrization would not allow enough
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flexibility; on the other hand a large number of parameters could spoil the convergence of

the fit, or be too sensitive to the statistical fluctuation of the experimental data.

This problem has been addressed by the NNPDF Collaboration in the case of unpo-

larized Deep Inelastic Scattering (DIS) structure functions in refs. [1, 2], and in the case

of the unpolarized PDFs in refs. [3–5] using a method based on statistical inference and

neural networks as an interpolating tool.

While avoiding technical complications linked to the extraction of PDFs from ob-

servables, the determination of structure functions addresses the main issue of devising a

faithful estimation of errors on a function extracted from experimental data. The main

ingredient in the studies above is the usage of Monte Carlo methods to obtain a repre-

sentation of the probability measure in the space of structure functions. An ensemble of

artificial data is generated, which reproduces all the statistical features (i.e. variances and

correlations) of the original experimental data. Each set of artificial data is called a replica.

A structure function, parametrized by a neural network, is then fitted to each replica. The

net result of this procedure is an ensemble of fitted functions. This ensemble of fitted func-

tions provides a representation of the measure in the space of structure functions. Errors

and correlations of any observable involving the structure functions are obtained averaging

over the ensemble of fits. Moreover suitable statistical estimators can be defined from the

Monte Carlo ensemble which provide a quantitative description of the possible biases and

inconsistencies in the fitting procedure. This method has been described in great detail in

refs. [1–4] to which the interested reader should refer.

The aim of this work is to apply the same techniques to obtain a bias-free parametriza-

tion of the photon asymmetries Ap
1 and Ad

1 from available polarized DIS data and extract

from them the corresponding structure functions gp
1 and gd

1 . We provide further testing

of the Monte Carlo method, and produce statistically meaningful error bars for the struc-

ture function. Besides allowing us to address all systematics related to the data and the

method, such a parametrization might be an ideal input for a fit based on factorization

scheme-invariant evolution equations to determine αs, as proposed in refs. [6, 7]. As shown

in this work, a careful treatment of statistical and systematic errors leads to a reliable

extraction of physically meaningful parameters such as αs, gA, and the higher-twist contri-

butions to the structure functions. While these are not the best determinations available

for these parameters, the results we obtain are in agreement with other determinations,

and show the robustness of the Monte Carlo method.

We shall now discuss in turn the two steps that are needed to produce the Monte

Carlo sample of fitted functions: first the treatment of the experimental data, and then the

actual fitting procedure. The experimental data points included in the fit are discussed in

section 2; section 3 summarizes briefly the NNPDF approach and the characteristics of the

neural networks used for this particular study. The results of our fits, together with their

phenomenological implications are presented and discussed in sections 4 and 5.
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2 Experimental data

The cross section asymmetry for parallel and anti-parallel configurations of longitudinal

beam and target polarizations is given by:

A|| =
σ↑↓ − σ↑↑

σ↑↓ + σ↑↑
(2.1)

and it is related to the virtual-photon asymmetries A1, A2 by:

A|| = D(A1 + ηA2) ≃ DA1 . (2.2)

The photon depolarization factor D depends on kinematic factors and on the ratio:

R(x,Q2) =
σL(x,Q2)

σT (x,Q2)
, (2.3)

where σL and σT are the longitudinal and the transverse cross sections respectively (see

e.g. refs. [8, 9] for a detailed definition of all the quantities).

The polarized structure functions g1 and g2 are related to the virtual-photon asymme-

tries by:

A1(x,Q2) =
g1(x,Q2) − γ2g2(x,Q2)

F1(x,Q2)
, (2.4)

A2(x,Q2) = γ
g1(x,Q2) + g2(x,Q2)

F1(x,Q2)
; (2.5)

where

F1(x,Q2) =
(1 + γ2)

2x[1 + R(x,Q2)]
F2(x,Q2) , (2.6)

is the unpolarized structure function, γ2 = 4m2x2

Q2 , and m denotes the nucleon mass. As for

the parametrization of the unpolarized structure function F2(x,Q2) we use the NNPDF

parametrization given in [1] for the proton and in [2] for the deuteron data. Previous

analyses of the same data, like the ones performed by the HERMES and NMC experimental

collaborations, used different parametrizations for the structure function F2(x,Q2). The

impact of of using a different parametrization for F2(x,Q2) on the computation of the

Bjorken sum rule is discussed in section 5.2, where we compare the value obtained for the

integral of the polarized structure function g1 computed over a given x range when different

parametrizations for F2 are used in extracting g1 from the asymmetry A1.

The main features of each experimental data set used in the present analysis are

summarized in table 1, and their kinematical coverage of the (x,Q2)-plane is shown in

figure 1. We observe that the kinematical coverage of the available data is rather small,

especially when compared to the one of the available unpolarized DIS data, thus we will

have a sizable region of the kinematical plane in which the fit extrapolates the behaviour

extracted from the region covered by data.
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Experiment x range Q2(GeV2) range Ndat 〈σstat〉 〈σsyst〉 〈σnorm〉 Type Ref.

Proton

EMC 0.015 - 0.466 3.5 - 29.5 10 0.077 0.024 0.028 A1 [10]

SMC 0.001 - 0.480 0.3 - 58.0 15 0.026 0.003 0.012 A1 [11]

SMC low-x 0.0001 - 0.121 0.02 - 23.1 15 0.033 0.002 0.006 A1 [12]

E143 0.031 - 0.75 1.27 - 9.52 28 0.045 0.016 0.012 A1 [13]

E155 0.015 - 0.75 1.22 - 34.72 24 0.043 0.018 0.026 g1/F1 [14]

HERMES06 0.0058 - 0.7311 0.26 - 14.29 45 0.126 0.019 0.017 A1 [15]

Deuteron

COMPASS 0.0051 - 0.474 1.18 - 47.5 12 0.034 0.017 0.011 A1 [16]

SMC 0.001 - 0.480 0.3 - 58.0 15 0.032 0.003 0.006 A1 [11]

SMC low-x 0.0001 - 0.121 0.02 - 23.1 15 0.069 0.005 0.005 A1 [12]

E143 0.031 - 0.75 1.27 - 9.52 28 0.066 0.011 0.008 A1 [13]

E155 0.015 - 0.75 1.22 - 34.72 24 0.091 0.009 0.011 g1/F1 [14]

HERMES06 0.0058 - 0.7311 0.26 - 14.29 45 0.089 0.007 0.009 A1 [15]

Table 1. The proton and deuteron experimental data sets included in the present analysis. We show

the kinematic range, the number of points, the average statistical, systematic and normalization

uncertainty, and the measured observable.

Figure 1. Experimental data in the (x, Q2) plane used in the present analysis for the proton (left)

and for the deuteron (right) target.

From table 1 we infer that the systematic errors are on average one order of magnitude

smaller than the statistical ones. This justifies the procedure of neglecting correlations for

systematic errors and the procedure of summing errors in quadrature when computing the

figure of merit (χ2) to be minimized in the fitting procedure.

Finally we notice that E155 data have been corrected to yield A1 by adding in

eq. (2.4) the g2 contribution evaluated with the Wandzura-Wilczek relation and using the

parametrization of g1/F1 given in ref. [14]: this shift is also added as a source of uncertainty

in the total error of the data set.

3 The NNPDF approach

In this section we briefly review the approach used to extract an unbiased determination of

the asymmetry A1 and the structure function g1 from the available inclusive polarized DIS

– 4 –
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data, following the analysis performed by the NNPDF Collaboration for the determination

of the unpolarized structure function F2 [1, 2] and the parton densities [3–5].

The core idea underlying the NNPDF approach is based on using Monte Carlo methods

to build a representation of the probability measure in the space of structure functions,

and parametrizing the space of structure functions using neural networks. We refer the

interested reader to the papers cited above for a detailed description of the methods and

in the following we will briefly discuss the settings used in this analysis. It is worthwhile

emphasizing that the Monte Carlo method does not require the use of neural networks,

and would yield a robust determination of the errors with any parametrization of the

structure function, provided the parametrization is sufficiently flexible. A comparison of

Monte Carlo analyses based on different parametrizations was performed in the framework

of the HERA-LHC workshop by comparing the standard H1 and NNPDF analyses. The

greater flexibility of the neural network parametrization compared to fixed functional forms

is reflected in the larger error bands obtained using the NNPDF method, especially when

considering the x region not covered by data (i.e. the extrapolation region). These features

are illustrated by the results in sections 3.2 and 3.4 of ref. [17].

3.1 Monte-Carlo replicas

We generate Nrep Monte-Carlo replicas of the experimental data according to

A
(art),k
1 (x,Q2) =

(

1 + rk,N

σN

A
(exp)
1 (x,Q2)

)

[

A
(exp)
1 (x,Q2) + rk,tσt(x,Q2)

]

, (3.1)

where rk are Gaussian distributed random numbers, σN is the quadratic sum of the normal-

ization errors and σt is the total error, obtained by summing in quadrature the statistical

and systematic errors, the latter assumed to be uncorrelated.

Following ref. [18], the covariance matrix for experimental data points is evaluated

using:

covij = σNi
σNj

+ δijσi,t , (3.2)

while during the fit for each replica, we minimize:

χ2(k) =

Ndata
∑

i=1

(

A
(art),k
1 (x,Q2) − A

(net),k
1 (x,Q2)

σ̄
(k)
i,t

)

, (3.3)

where

σ̄
(k)
i,t =

(

1 + rk,N
σN

A
(exp)
1 (x,Q2)

)

σi,t . (3.4)

The number of Monte Carlo replicas of the data is determined by requiring that the

average over the replicas reproduces the features (central values, errors and correlations) of

the original experimental data to a required accuracy. The quantitative check is performed

by means of the statistical estimators described in the appendix of ref. [2] and the results

for sets of 10, 100 and 1000 replicas are collected in table 2 for the proton target data and

in table 3 for the deuteron target data. We observe that all the considered estimators have
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10 100 1000

〈PE
[

〈A
(art)
1 〉rep

]

〉 14.20% 3.21% 1.83%

r
[

A
(art)
1

]

0.974203 0.998114 0.999682

〈V
[

σ(art)
]

〉dat 3.1 · 10−3 1.5 · 10−3 6.5 · 10−4

〈PE
[

〈σ(art)〉
]

〉dat 35.45% 12.44% 4.20%

〈σ(art)〉dat 0.0699 0.0766 0.0768

r
[

σ(art)
]

0.989956 0.997808 0.999793

〈V
[

ρ(art)
]

〉dat 9.5 · 10−2 8.9 · 10−3 9.2 · 10−4

〈ρ(art)〉dat 0.1469 0.1567 0.1585

r
[

ρ(art)
]

0.638102 0.944682 0.993523

〈V
[

cov(art)
]

〉dat 7.6 · 10−5 1.1 · 10−5 1.5 · 10−6

〈cov(art)〉dat 0.00166 0.00154 0.00160

r
[

cov(art)
]

0.898803 0.986219 0.998858

Table 2. Statistical estimators for Monte Carlo replicas of A1 for the proton data. The experimental

data have 〈σ(exp)〉dat = 0.0764, 〈ρ(exp)〉dat = 0.1566, and 〈cov(exp)〉dat = 0.00153.

10 100 1000

〈PE
[

〈A
(art)
1 〉rep

]

〉 89.71% 24.90% 5.97%

r
[

A
(art)
1

]

0.977524 0.98633 0.999865

〈V
[

σ(art)
]

〉dat 5.3 · 10−3 1.7 · 10−3 6.7 · 10−4

〈PE
[

〈σ(art)〉
]

〉dat 35.03% 11.75% 4.4%

〈σ(art)〉dat 0.0689 0.0739 0.0734

r
[

σ(art)
]

0.977501 0.997965 0.999705

〈V
[

ρ(art)
]

〉dat 1.0 · 10−2 9.2 · 10−3 8.7 · 10−4

〈ρ(art)〉dat 0.0878 0.0904 0.0861

r
[

ρ(art)
]

0.612155 0.932158 0.992952

〈V
[

cov(art)
]

〉dat 6.3 · 10−5 1.0 · 10−5 1.0 · 10−6

〈cov(art)〉dat 0.00133 0.00145 0.00134

r
[

cov(art)
]

0.959275 0.995339 0.999479

Table 3. Statistical estimators for Monte Carlo replicas of A1 for the deuteron data. The experi-

mental data have 〈σ(exp)〉dat = 0.0733, 〈ρ(exp)〉dat = 0.0862, and 〈cov(exp)〉dat = 0.00135.

the correct scaling behaviour as the number of replica grows. We also point out that the

large percentage error on the deuteron central values is due to a bulk of data whose values

are close to zero.

3.2 Neural Networks as unbiased interpolants

Artificial neural networks, see e.g. ref. [19], are a class of algorithms which provide a

robust and universal approximant to incomplete or noisy data, with the only requirement

of continuity. Neural networks are universal approximators for measurable functions [20].

– 6 –
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Figure 2. χ2 for the training (red) and validation (green) sets of one replica in the reference fit

to Ap
1.

This means that any continuous function can be approximated to any degree of accuracy by

a sufficiently large neural network with one hidden layer and non-linear neuron activation

function.

One of the main reasons to use neural networks in place of any other redundant

parametrization is the existence of efficient techniques for training them, i.e. determin-

ing the parameters of the network (thresholds and weights) so that it reproduces a given

set of input-output data. Equivalently one could say that a sufficiently large neural network

provides a description of the data which is largely free of functional bias.

The analysis presented here uses a class of neural networks known as multilayer feed-

forward perceptrons, trained using a genetic algorithm [21, 22]. The networks we employed

have one hidden layer and a 2-4-1 architecture, which gives us a total of 17 free parameters

for each network to be determined during the training. The guidance principle in the choice

of the network architecture to be used is that it should provide a redundant parametrization

for the data to be fitted, i.e. the network should have enough flexibility to fit not only

the underlying physical law but also the statistical fluctuations of the experimental data.

This property is crucial in ensuring that the fit results are not biased by the specific

parametrization. The lack of functional bias is established a posteriori by verifying that fits

performed with networks with different architectures lead to statistically equivalent results.

This is achieved using the statistical estimators introduced in the NNPDF Collaboration’s

studies; the results of these comparisons are presented and discussed later.

The training of the individual networks to the Monte Carlo replicas is performed by

minimizing the figure of merit given in eq. (3.3). Given the extensive size and complex

structure of the parameter space (a neural network with n parameters, weights and

thresholds has 2n! equivalent global minimum configurations), the most efficient training

algorithm turns out to be a genetic algorithm. The details of the implementation are

discussed in ref. [3].

As already pointed out in various references the fact that we adopt a redundant

– 7 –
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parametrization and that the figure of merit minimized in the training procedure is mono-

tonically decreasing might lead to overfitting the data: the neural network reproduces not

only the underlying physical law but also the statistical noise of the data sample. To pre-

vent this from happening and to determine the optimal fit we adopt a criterion to stop

our fit based on the cross-validation method. Once again our procedure is completely

analogous to the one used for the unpolarized NNPDF fits.

For each replica of the experimental data we subdivide the data into a training and a

validation set, respectively containing a fraction ftr and (1− ftr) of randomly chosen data

points of each experiment.

We train one neural network on each replica of the data using the χ2 of the training

set as a figure of merit to be minimized. In parallel we compute the χ2 of the validation

set. We stop the training when we find that the χ2 smeared over a given number of

generations is decreasing for the training set while increasing for the validation set. A

graphical illustration of such a behaviour for one of the replicas in the reference fit is given

in figure 2.

4 Phenomenology

The study of the first moments of polarized structure functions is of phenomenological

interest, since they can be used to extract information on the fraction of polarization

carried by partons and on physical couplings. In the MS scheme we have

Γp,n
1 (Q2) =

∫ 1

0
dx gp,n

1 (x,Q2) = (4.1)

=
1

36

[

(a8 ± 3a3)∆CMS
NS (αs(Q

2)) + 4a0∆CMS
S (αs(Q

2))
]

,

where ∆CMS
NS (αs(Q

2)) and ∆CMS
S (αs(Q

2)) are the first moments of the non-singlet and

singlet Wilson coefficient functions, respectively, and

a3 = (∆u + ∆ū) − (∆d + ∆d̄) , (4.2)

a8 = (∆u + ∆ū) + (∆d + ∆d̄) − 2(∆s + ∆s̄) , (4.3)

a0 = (∆u + ∆ū) + (∆d + ∆d̄) + (∆s + ∆s̄) ≡ ∆Σ . (4.4)

Using isotopic spin invariance, it can be shown that a3 is the axial coupling gA =

GA/GV that governs neutron β-decay. Accurate measurements yield (see e.g. ref. [9]):

gA = 1.2670 ± 0.0035 . (4.5)

The difference of the g1 moments for proton and neutron leads to the Bjorken sum

rule

ΓNS
1 (Q2) = Γp

1(Q
2) − Γn

1 (Q2) =
1

6
gA∆CMS

NS (αs(Q
2)) + δT + δτ ; (4.6)

– 8 –
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where δT is the target mass correction and δτ is the correction due to higher twists. Target

mass corrections have been studied in refs. [23–26] and can be evaluated for any moment

n at the first order in m2/Q2 using [24]:

δT = g
(n)
1 (Q2) − g

(n)
10 (Q2) =

m2

Q2

n(n + 1)

(n + 2)2

[

(n + 4)gn+2
10 (Q2) + 4

n + 2

n + 1
gn+2
20 (Q2)

]

, (4.7)

where g
(n)
i (Q2) =

∫ 1
0 dxxn−1gi(x,Q2) and gi0 is the structure function taken at zero mass

of the nucleon. The higher-twist contribution is simply

δτ =
µ4

Q2
, (4.8)

where µ4 can be extracted from experimental data at low Q2 such as the CLAS data [27].

Finally, the coefficient function of eq. (4.6) has been calculated in ref. [28] and up to order

α3
s is given by:

∆CMS
NS (αs(Q

2)) = 1 −
αs(Q

2)

π
−

(

55

12
−

nf

3

)(

αs(Q
2)

π

)2

−

(

41.4399 − 7.6072nf +
115

648
n2

f

)(

αs(Q
2)

π

)3

. (4.9)

For the running coupling we use the expanded solution of the renormalization group equa-

tion, up to NNLO we have:

αs

(

Q2
)

= αs

(

Q2
)

LO

[

1 + αs

(

Q2
)

LO

[

αs

(

Q2
)

LO
− αs

(

M2
Z

)]

(b2 − b2
1)

+αs

(

Q2
)

NLO
b1 ln

αs

(

Q2
)

NLO

αs

(

M2
Z

)

]

, (4.10)

with

αs

(

Q2
)

NLO
= αs

(

Q2
)

LO

[

1 − b1αs

(

Q2
)

LO
ln

(

1 + β0αs

(

M2
Z

)

ln
Q2

M2
Z

)]

, (4.11)

αs

(

Q2
)

LO
=

αs

(

M2
Z

)

1 + β0αs

(

M2
Z

)

ln Q2

M2
Z

, (4.12)

and the beta function coefficients given by

Q2 das(Q
2)

dQ2
= −

2
∑

k=0

βkas(Q
2)k+2, as(Q

2) =
αs(Q

2)

4π
, (4.13)

where

β0 = 11 −
2

3
nf , (4.14)

β1 = 102 −
38

3
nf ,

β2 =
2857

2
−

5033

18
nf +

325

54
n2

f ,

– 9 –
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Proton χ2 Deuteron χ2

EMC 0.370 COMPASS 0.885

SMC 0.480 SMC 1.100

SMC low-x 1.150 SMC low-x 0.774

E143 0.904 E143 1.530

E155 0.717 E155 0.661

HERMES06 0.456 HERMES06 0.881

Total 0.666 Total 0.986

Table 4. The χ2 of the fit for proton and deuteron data.

where bi ≡ βi/β0 and nf is the number of active flavours at the scale Q2.

In order to relate the value of the strong coupling constant at the energy scale Q2 ∼

1 GeV2 to its value at the scale Q2 = M2
Z at which we will be comparing with other

determinations, the proper matching at the charm- and bottom-quark thresholds has to

be performed. The matching conditions for the values of αS below and above the heavy

quark thresholds are given in [29]. At leading and next-to-leading order they imply the

continuity of the coupling constant at the threshold. In higher orders the strong coupling

constant is discontinuous when crossing the heavy quark thresholds.

5 Results

In this section we present our parametrization of the proton and deuteron asymmetries

and the structure functions extracted from them.

We assess the quality of the fit by comparing our extraction with the experimental

data included in the analysis, and by studying the stability of our results under variations

of the parametrization used for the networks.

Then, as an example of a possible application of our result to a phenomenological

analysis, we study the extraction of the physical parameters (the strong coupling constant

αs and the axial coupling gA) from the Bjorken sum rule. In order to give a faithful error

on the extracted quantities we study the impact of the different assumptions which are

needed to reconstruct the structure functions and then to evaluate the Bjorken sum rule.

Results are compared to existing estimates.

5.1 The final fit and its statistical features

In table 4 we show the χ2/Ndata for each target and each experimental data set included in

the present analysis. We first observe the overall good quality of our fit. For the proton the

small values of χ2 for EMC, SMC and HERMES can be explained by a possible overestimate

of experimental errors. For the deuteron all the χ2 are of order 1, except for the E155 data

set which has a value of χ2 significantly smaller than one. The somewhat larger value of

χ2 for the E143 deuteron data set can be understood by looking at figures 3 and 4 where

we present a comparison of our fit to experimental data in different kinematical regions.

We observe that in the case of E143 the deuteron data show small incompatibilities among
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Figure 3. The fitted asymmetries compared to proton (left) and deuteron (right) data for

0.01 GeV2 < Q2 < 1 GeV2 (upper row), 1 GeV2 < Q2 < 3 GeV2 (central row) and

3 GeV2 < Q2 < 5 GeV2 (lower row). In the plots A1 is evaluated at the central value of each

Q2 range.

themselves, and the large value of χ2 is a reflection of this. It is interesting to remark that

a careful analysis of the χ2 value for each experiment allows the identification of potential

incompatible data. This feature had already been pointed out in the unpolarized studies

by the NNPDF Collaboration.

In tables 5, 6, and 7 we study the self-stability of the fit and the stability against the

variation of the parametrization with respect to a smaller and a larger architecture. To this

extent we define four different regions: one where we expect our fit to be an interpolation
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Figure 4. The fit compared to proton (left) and deuteron (right) data for 5 GeV2 < Q2 < 10 GeV2

(upper row), 10 GeV2 < Q2 < 30 GeV2 (central row) and 30 GeV2 < Q2 < 60 GeV2 (lower row).

In the plots A1 is evaluated at the central value of each Q2 range.

of the available data (Data region) and three where its behaviour is extrapolated to regions

of the (x,Q2)-plane not covered by present data:

• Data: 0.01 < x < 0.75 and 2 GeV2 < Q2 < 20 GeV2;

• Low-x: 0.0001 < x < 0.001 and 2 GeV2 < Q2 < 20 GeV2;

• Low-Q2: 0.2 < x < 0.8 and 0.1 GeV2 < Q2 < 2 GeV2;

• High-Q2: 0.2 < x < 0.8 and 20 GeV2 < Q2 < 60 GeV2.
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Proton Data Low-x Low-Q2 High-Q2

〈d[A1]〉 0.963 ± 0.011 0.660 ± 0.011 1.085 ± 0.015 0.966 ± 0.014

〈d[σA1
]〉 0.840 ± 0.006 0.618 ± 0.011 0.966 ± 0.014 0.905 ± 0.012

Deuteron Data Low-x Low-Q2 High-Q2

〈d[A1]〉 0.772 ± 0.008 0.670 ± 0.012 0.804 ± 0.012 0.688 ± 0.011

〈d[σA1
]〉 0.818 ± 0.007 0.899 ± 0.014 0.730 ± 0.011 0.773 ± 0.011

Table 5. Self-stability estimators evaluated with 100 replicas. The entries in the table show the

statistical differences between results based on different subsets of 100 replicas randomly chosen in

our Monte Carlo ensemble.

Proton Data Low-x Low-Q2 High-Q2

〈d[A1]〉 0.952 ± 0.010 0.792 ± 0.014 0.859 ± 0.012 1.295 ± 0.016

〈d[σA1
]〉 1.104 ± 0.008 1.405 ± 0.013 0.975 ± 0.014 1.002 ± 0.011

Deuteron Data Low-x Low-Q2 High-Q2

〈d[A1]〉 1.217 ± 0.012 1.302 ± 0.012 1.324 ± 0.017 0.703 ± 0.010

〈d[σA1
]〉 0.963 ± 0.008 1.199 ± 0.010 0.962 ± 0.010 1.689 ± 0.019

Table 6. Stability estimators for the reference fit (architecture 2-4-1) compared to a fit with a

smaller architecture (2-3-1).

Proton Data Low-x Low-Q2 High-Q2

〈d[A1]〉 1.076 ± 0.012 1.179 ± 0.017 0.693 ± 0.011 1.625 ± 0.018

〈d[σA1
]〉 1.258 ± 0.010 1.354 ± 0.014 0.709 ± 0.010 1.151 ± 0.016

Deuteron Data Low-x Low-Q2 High-Q2

〈d[A1]〉 0.867 ± 0.009 0.794 ± 0.012 0.856 ± 0.015 0.840 ± 0.017

〈d[σA1
]〉 1.460 ± 0.009 1.941 ± 0.015 1.410 ± 0.011 1.303 ± 0.011

Table 7. Stability estimators for the reference fit (architecture 2-4-1) compared to a fit with a

larger architecture (2-5-1).

We observe that all the estimators for self-stabilities are of order unity (or smaller), mean-

ing that different subsets within the whole ensemble of replicas have the same statistical

features.

When we compare our final fit to a fit performed using networks with a smaller ar-

chitecture, we notice that the the two fits are statistically equivalent. The same happens

for the comparison with a fit done with networks with a larger architecture, with the only

exception of the errors on the deuteron fit in the extrapolation (all distances are order 1.5),

which show some minor instability.

5.2 Structure functions reconstruction

In order to reconstruct the structure function g1 from data on the asymmetry A1 as given

in eq. (2.4) some additional assumptions are needed. In the following we assess the impact

of our assumptions for g2, F2 and R on the determination of first moment of g1. These

checks are done using an ensemble of 100 replicas, which is enough to this purpose, and in

a range of x and Q2 which is entirely in the data region in order to avoid any extrapolation

effects. Finally, we compare our result for 1000 replicas with the sum rules obtained by

experimental collaborations.
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Proton Q2 = 2 GeV2 Q2 = 5 GeV2 Q2 = 10 GeV2 Q2 = 20 GeV2

iww = 0 0.1184 ± 0.0069 0.1196 ± 0.0068 0.1272 ± 0.0106 0.1401 ± 0.0216

iww = 1 0.1086 ± 0.0062 0.1154 ± 0.0066 0.1251 ± 0.0104 0.1391 ± 0.0215

iww = 2 0.1072 ± 0.0061 0.1152 ± 0.0065 0.1251 ± 0.0104 0.1391 ± 0.0215

Deuteron Q2 = 2 GeV2 Q2 = 5 GeV2 Q2 = 10 GeV2 Q2 = 20 GeV2

iWW = 0 0.0459 ± 0.0049 0.0414 ± 0.0036 0.0401 ± 0.0064 0.0397 ± 0.0149

iWW = 1 0.0414 ± 0.0044 0.0396 ± 0.0035 0.0392 ± 0.0064 0.0393 ± 0.0149

iWW = 2 0.0407 ± 0.0042 0.0395 ± 0.0034 0.0392 ± 0.0064 0.0393 ± 0.0149

Table 8. First moment for x between 0.01 and 0.75 for different number of iterations of the

Wandzura-Wilczek relation.

The first assumption whose impact we consider is the one on the structure function

g2, which is evaluated from the Wandzura-Wilczek relation [30]

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

dy

y
g1(y,Q2) . (5.1)

Inserting this expression into eq. (2.4) gives

g1(x,Q2) =
1

1 + γ2

(

A1(x,Q2)F1(x,Q2) + γ2

∫ 1

x

dy

y
g1(y,Q2)

)

, (5.2)

which needs to be evaluated iteratively. To this purpose we take the initial value g1(x,Q2)

evaluated with g2(x,Q2) = 0, and we use

g
(iWW )
1 (x,Q2) =

1

1 + γ2

(

A1(x,Q2)F1(x,Q2) + γ2

∫ 1

x

dy

y
g
(iWW −1)
1 (y,Q2)

)

. (5.3)

From table 8 we see that for Q2 values above 2 GeV2 one iteration is enough to stabilize

the result for the first moment of g1 computed in the data region. For lower scales, say

Q2 ≃ 1 GeV2, at least two iterations of the Wandzura-Wilczek relation are needed in order

to obtain a stable result. In the following the index iWW will be omitted as the number of

iterations used should be evident from the scale at which the first moment of g1 is evaluated.

For the unpolarized structure function F2 we use the parametrization given in ref. [2]

for the proton and the one given in ref. [1] for the deuteron. Since these parametrizations

have also been extracted using a Monte Carlo procedure, ensembles of replicas are available

for F2; hence the result for g1 is evaluated as:

g1(x,Q2) =
1

Nrep

Nrep
∑

k=1

[

A
(k)
1 (x,Q2)

(1 + γ2)

2x [1 + R(x,Q2)]
F

(k)
2 (x,Q2) + γ2g

(k)
2 (x,Q2)

]

, (5.4)

which takes into account both the uncertainty on A1 and the one on F2 (with g
(k)
2 (x,Q2)

we denote the expression in eq. (5.1) evaluated for the k-th replica). Since there is no

correlation between the extraction of A1 and the one of F2 the replicas of A1, and F2 can

be sampled independently.
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Proton Q2 = 2 GeV2 Q2 = 5 GeV2 Q2 = 20 GeV2

eq. (5.4) 0.1086 ± 0.0062 0.1154 ± 0.0066 0.1391 ± 0.0215

eq. (5.5) 0.1086 ± 0.0059 0.1154 ± 0.0064 0.1391 ± 0.0213

Deuteron Q2 = 2 GeV2 Q2 = 5 GeV2 Q2 = 20 GeV2

eq. (5.4) 0.0414 ± 0.0044 0.0396 ± 0.0035 0.0393 ± 0.0149

eq. (5.5) 0.0414 ± 0.0038 0.0396 ± 0.0034 0.0394 ± 0.0150

Table 9. First moment for x between 0.01 and 0.75 with and without the error on F2.

In order to estimate the contribution of the uncertainty on F2 to the uncertainty on

g1, we can recompute g1 as

g1(x,Q2) =
1

Nrep

Nrep
∑

k=1

[

A
(k)
1 (x,Q2)

(1 + γ2)

2x [1 + R(x,Q2)]
〈F2〉(x,Q2) + γ2g

(k)
2 (x,Q2)

]

, (5.5)

where for each k-th replica of A1 we use the averaged value of the unpolarized structure

function

〈F2〉(x,Q2) =
1

Nrep

Nrep
∑

k=1

F
(k)
2 (x,Q2) . (5.6)

This procedure clearly freezes the fluctuations in F2, which is kept fixed to its average

value. The result is given in table 9, where we see that the contribution to the uncertainty

on the first moment of g1 due to F2 is negligible. In the following we will always use g1 as

given from eq. (5.4).

Finally a parametrization of R(x,Q2) is needed in order to extract g1 from A1. Here

we use RSLAC(x,Q2) given in ref. [31, 32]. Such a parametrization provides also an error

estimate, which we use to assess the impact of RSLAC(x,Q2) on the total uncertainty of the

first moment of g1. In table 10 we compare the sum rule evaluated with the central value

of RSLAC(x,Q2) with the one obtained by taking into account the error on RSLAC(x,Q2).

This is achieved by letting RSLAC(x,Q2) fluctuate within its own error in the Monte Carlo

sample; for the k-th replica we use:

RSLAC(x,Q2) + r(k)∆RSLAC(x,Q2) , (5.7)

where ∆RSLAC(x,Q2) is the error on the parametrization, and r(k) is a univariate Gaussian

random number. Since RSLAC(x,Q2) is a parametrization of experimental data, we take

the error as a statistical one, with no correlation between different replicas, and thus we

use a different random number each time a value of RSLAC(x,Q2) is needed. From the

results collected in table 10 we conclude that the error on RSLAC(x,Q2) is also negligible.

We will now compare our results for the integral of g1 at different scales and over

different x ranges obtained using our ensemble of 1000 replicas with those obtained by

different experimental collaborations.

In table 11 results for the proton and the deuteron sum rules are compared to the

result of ref. [11]. We observe that the results are compatible within errors, and that our

evaluation has a larger error.
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Proton Q2 = 2 GeV2 Q2 = 5 GeV2 Q2 = 20 GeV2

RSLAC(x, Q2) 0.1086 ± 0.0062 0.1154 ± 0.0066 0.1391 ± 0.0215

RSLAC(x, Q2) + r(k)∆RSLAC(x,Q2) 0.1086 ± 0.0062 0.1154 ± 0.0066 0.1392 ± 0.0216

Deuteron Q2 = 2 GeV2 Q2 = 5 GeV2 Q2 = 20 GeV2

RSLAC(x, Q2) 0.0414 ± 0.0044 0.0396 ± 0.0035 0.0393 ± 0.0149

RSLAC(x, Q2) + r(k)∆RSLAC(x,Q2) 0.0415 ± 0.0044 0.0397 ± 0.0035 0.0395 ± 0.0148

Table 10. First moment for x between 0.01 and 0.75 with and without the error on R.

Target SMC98 This Analysis

Q2 = 10GeV2

p 0.131 ± 0.009 0.139 ± 0.015

d 0.037 ± 0.007 0.035 ± 0.011

Table 11. Comparison of the proton and deuteron sum rules
(

∫ 0.7

0.003
dxg1(x, Q2)

)

as determined

in the present analysis with the results obtained by the SMC collaboration [11].

Figure 5. Comparison of NNPDF, SMC98 and ALLM parametrizations of the unpolarized struc-

ture function F p
2 in the region where we evaluate the Bjorken sum rule.

In table 12 we compare our result with the ones in refs. [13], and [15]. First we notice

that the errors are of the same size, while our central values are systematically smaller,

with a significant difference for the proton at low Q2. A substantial part of effect can

be attributed to the different parametrization used for the unpolarized structure function.

Indeed, if we evaluate the sum rule of E143 with the SMC98 F p
2 parametrization [11, 33, 34],

at Q2 = 2 GeV2 we obtain 0.116±0.008 which is less than one sigma away from the result in

refs. [13]; the same happens for the HERMES06 case, using the ALLM parametrization [35]

at Q2 = 2.5 GeV2 we get 0.1188±0.0073. This can be understood looking at figure 5 where

we compare the different parametrizations for F p
2 used in the different analysis.

It is clear that, while the different F p
2 parametrizations agree in the kinematical region

covered by experimental data, they differ significantly at low-Q2 in the large-x region

where there are no data and an extrapolation is needed. For the ALLM and the SMC98

parametrizations the large-x behaviour is determined by the chosen functional form; the

NNPDF parametrization interpolates by continuity from the last experimental point to
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Target E143 This Analysis

Q2 = 2GeV2

p 0.120 ± 0.007 0.102 ± 0.007

d 0.047 ± 0.006 0.042 ± 0.005

n −0.022 ± 0.013 −0.011 ± 0.011

NS 0.149 ± 0.016 0.113 ± 0.016

Q2 = 5GeV2

p 0.116 ± 0.007 0.106 ± 0.006

d 0.043 ± 0.004 0.040 ± 0.003

n −0.025 ± 0.009 −0.018 ± 0.009

NS 0.141 ± 0.013 0.124 ± 0.014

Target HERMES This Analysis

Q2 = 2.5GeV2

p 0.1201 ± 0.0090 0.1055 ± 0.0066

d 0.0428 ± 0.0035 0.0416 ± 0.0043

n −0.0276 ± 0.0093 −0.0154 ± 0.0107

NS 0.1477 ± 0.0167 0.1209 ± 0.0152

Q2 = 5GeV2

p 0.1211 ± 0.0092 0.1097 ± 0.0065

d 0.0436 ± 0.0035 0.0407 ± 0.0033

n −0.0268 ± 0.0094 −0.0218 ± 0.0093

NS 0.1479 ± 0.0169 0.1315 ± 0.0144

Table 12. Comparison of the integral of g1 over different x ranges, at different scales, as determined

form the present analysis with the results obtained form by E143, left pad:
∫ 0.8

0.03
dxg1(x, Q2) and

HERMES, right pad:
∫ 0.9

0.021 dxg1(x, Q2).

Figure 6. Plot of the structure functions in the region where we evaluate the Bjorken sum rule.

The fit curves are taken at Q2 = 5 GeV2.

the kinematical constrain F2(x = 1, Q2) = 0. The difference among the parametrizations

is then enhanced once we multiply by the asymmetry A1 to reconstruct the polarized

structure function g1.

Since no neutron target data have been used in our fit, the neutron structure function,

gn
1 , is evaluated from the proton and deuteron ones as

gn
1 (x,Q2) = 2

gd
1(x,Q2)

1 − 1.5ωD
− gp

1(x,Q2) , (5.8)

where ωD is the probability of the deuteron to be in the D state; we use ωD = 0.05 which

covers most of the published values [36]. We observe that, even if the neutron sum rule is

a pure prediction, it is compatible with other estimations.

In figure 6 we show a comparison of the polarized structure function as extracted in this

analysis to data, in the region where we evaluate the Bjorken sum rule. The comparison

shows a good agreement.
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5.3 Extraction of couplings

In order to extract the strong coupling αs and the axial coupling gA from the values of the

Bjorken sum rule we need to extrapolate our fit in the Bjorken variable x down to x = 0

and up to x = 1.

In this section we discuss the impact of these extrapolations on the extraction of the

couplings, and we assess the impact of target mass corrections. Finally we present the

results we obtain for αs and gA from our fit. All checks are performed with 100 replicas,

while for final results we use the full set of 1000 replicas.

The extrapolation at large-x is embedded in the parametrization of F2, as discussed

in the previous section. Therefore we do not need any further assumption to constrain the

large-x behaviour.

The low-x behavior of the structure function g1 is instead very weakly constrained by

data, and the Regge behaviour is usually assumed; following ref. [37] we write:

g1(x,Q2) ≃ Axb , (5.9)

with 0 < b < 0.5. Such an assumption requires to choose a value of xmatch such that

for x < xmatch the Regge behaviour is assumed to set in. The normalization factor A in

eq. (5.9) is then determined by the matching condition

g
(fit)
1 (xmatch, Q2) = Axb

match . (5.10)

In order to choose the matching point, we fix the Regge exponent to 0.2 and then

we proceed as in ref. [38]: we evaluate the integrals at different values of Q2 in the range

0 < x < 1 for different choices of xmatch, and we look for the minimum value of the error

for each value of Q2.

From the results collected in table 13 we see that xmatch grows as Q2 gets larger. This

is understood looking at figure 1 where we see that for larger scales the coverage of the

data moves towards higher values of x.

Once the matching point is been determined, in order to take into account the un-

certainty on the value of the Regge exponent and the one on the choice of the matching

point, we randomize the Regge exponent in the range −0.1 < b < 0.5 and we choose the

matching point to be in the range xmatch < x < 2xmatch.

In table 14 we present the comparison for the first moment of the structure function

g1 evaluated with and without the target mass correction as given in eq. (4.7). We observe

that the shift on the values of the moment due to the inclusion of these effects is smaller

than the experimental error even at the lowest Q2.

In principle we could extract gA, αs and the higher-twist term by fitting eq. (4.6) evalu-

ated from data at a given value of Q2. In practice we evaluate NQ2 different moments taken

at different Q2 in the kinematical region where we have a good coverage by experimental

data: 2 GeV2 ≤ Q2 ≤ 20 GeV2. Indeed for Q2 > 20 GeV2 the errors on the computed

moments become so large that their weighted contribution in the combination is negligible.

On the lower side of the energy range we choose to start from Q2 = 2 GeV2, since below

– 18 –



J
H
E
P
1
1
(
2
0
0
9
)
0
6
0

Q2(GeV2) xmatch ΓNS
1 (Q2) Error

1 0.0100 0.12499 0.020989

2 0.0100 0.1356 0.018239

3 0.0100 0.14324 0.017827

4 0.0200 0.13847 0.018275

5 0.0200 0.14322 0.019021

6 0.0200 0.14757 0.020115

7 0.0200 0.15142 0.021429

8 0.0300 0.1458 0.02262

9 0.0300 0.14827 0.023859

10 0.0300 0.15054 0.025165

11 0.0300 0.15265 0.02653

12 0.0500 0.14111 0.027703

13 0.0500 0.14241 0.028749

14 0.0500 0.14366 0.029828

15 0.0500 0.14487 0.030941

16 0.0500 0.14604 0.032087

17 0.0500 0.14718 0.033267

18 0.0500 0.14829 0.03448

19 0.0800 0.13397 0.03552

20 0.0800 0.13461 0.036394

Table 13. First moment of g1 with different values of Q2: the error on ΓNS
1 (Q2) has been added a

100% uncertainty on the low-x extrapolation.

Proton Q2 = 1 GeV2 Q2 = 2 GeV2

noTMC 0.1410 ± 0.0109 0.1264 ± 0.0083

wTMC 0.1459 ± 0.0116 0.1276 ± 0.0086

Deuteron Q2 = 1 GeV2 Q2 = 2 GeV2

noTMC 0.0493 ± 0.0141 0.0350 ± 0.0058

wTMC 0.0515 ± 0.0158 0.0355 ± 0.0059

Table 14. First moment with and without TMC with b = 0.2 for the low-x extrapolation matched

at x = 0.001.

this scale a perturbative QCD approach might not be reliable. For this reason we do not

fit the higher-twist term, but we will access its contribution by varying the lower cut in Q2.

We then proceed following the procedure described in detail in section 4.3 of ref. [39]:

the extraction of couplings is done by combining moments at different values of Q2 in the

chosen range and fitting eq. (4.6) using MINUIT [40] where gA and αs are the chosen as

free parameters. The moments at different Q2 are correlated, since they are computed

using the same fitted parametrization. As detailed in ref. [39] these correlations induce nu-

merical instabilities in the inversion of the correlation matrix and off-diagonal instabilities

due to non-diagonal elements in the correlation matrix becoming dominant. Both these
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Q2 gA αs(M
2
Z)

2+5 1.04 ± 0.12 0.126 ± 0.005

2+6 1.07 ± 0.16 0.127 ± 0.007

2+7 1.08 ± 0.20 0.128 ± 0.008

2+8 1.02 ± 0.21 0.125 ± 0.012

3+6 1.09 ± 0.13 0.131 ± 0.005

3+7 1.12 ± 0.17 0.132 ± 0.007

3+8 1.04 ± 0.20 0.127 ± 0.013

4+8 1.03 ± 0.17 0.127 ± 0.015

Table 15. Fits with different choices of Q2.

gA αs(M
2
Z) kF

1.02 ± 0.12 0.126 ± 0.006 0.5

1.04 ± 0.12 0.126 ± 0.005 0.75

1.01 ± 0.11 0.121 ± 0.006 1.5

1.03 ± 0.12 0.120 ± 0.005 2.0

Table 16. Reference fit (Q2 = 2, 5 GeV2, NNLO, 1000 reps, kF = 1) compared with variations of

the factorization scale.

instabilities lead to unreliable results for the extracted couplings.

In order to fix the maximum value of NQ2 for which the extraction of the parameters is

numerically stable and reliable, we study the error on the determination of gA and αs as we

vary the number of included moments. Once we exclude moments with large correlations,

we are left with a small number of combinations, which are showed in table 15.

The combination giving the smallest error (Q2 = 2, 5 GeV2), once we evaluate asym-

metric errors, yields

αs(M
2
Z) = 0.126+0.004

−0.009 , (5.11)

for the strong coupling, while the error on gA is found to be symmetric.

The only sources of theoretical uncertainty left to consider are the one due to the choice

of factorization scale Q = kF mq, which we study by varying kF in the range 0.5 < kF < 2

and to the higher-twist contribution. The results of the variation of the factorization scale

are shown in table 16. To take into account the higher-twist contribution we take as

an estimate the variation of the central values once the lower Q2 value is moved up to

Q2 = 3 GeV2 (see table 15) and down to Q2 = 1 GeV2 (gA = 0.99 ± 0.14 and αs(M
2
Z) =

0.117 ± 0.007).

In conclusion, we obtain the following result for the determination of the axial coupling

gA and the strong coupling constant αs

gA = 1.04 ± 0.12(exp.)+0.05
−0.06(theo.) = 1.04 ± 0.13(tot.) (5.12)

αs(M
2
Z) = 0.126+0.004

−0.009(exp.)+0.005
−0.011(theo.) = 0.126+0.006

−0.014(tot.) ,
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which are compatible with previous extractions [6, 43, 44] from polarized DIS and the

Bjorken sum rule and with the World Averages. We notice that, although compatible

within errors, the analyses performed in [6] obtains a rather smaller value for the strong

coupling constant αs(M
2
Z). First we would like to point out that the analysis in [6] is a

QCD analysis in which the value of αs is extracted toghether with a parametrization of the

polarized PDFs. In the present analysis, on the other side, the strong coupling constant is

determined from the Bjorken sum rule without assumptions on the functional form of the

parton densities.

We also notice that in the present analysis we include data which where excluded in the

analysis of [6] because they were removed from the dataset by the cuts imposed in order to

be in the region of applicability of perturbative QCD. This data, which have Q2 < 1 GeV2,

mainly constrain the form of the structure function g1 at small x and, indirectly, the value

of αs determined from the scale dependence of the Bjorken sum rule.

6 Conclusions

We extracted a parametrization of the spin asymmetries Ap,d
1 , based on all available DIS

data using the Monte-Carlo sampling techniques and neural networks as basic interpolation

tools. We checked in the process that the statistical methods developed for the unpolarized

studies by the NNPDF Collaboration can be naturally extended to handle the new data

sets considered in this work. Our main result is an effective tool, which we used to test

different assumptions needed to reconstruct the polarized structure function g1. As an

example of possible applications we compared to previous estimations of experimental sum

rules, and we found that the used parametrization for the unpolarized structure function

F2 can be a sizable source of error at low values of Q2. We also performed a study of

the Bjorken sum rule, and the extraction of the axial coupling and the strong coupling,

obtaining values which are compatible with previous analyses.

It would be interesting to compare the results obtained for the Bjorken sum rule when

determined from global QCD fits to polarized DIS, SDIS and hadron-hadron collisions

data, like the one presented in [45], especially once W production data from RHIC will be

included in such fits, providing an extra constraints on the light flavours separation.

The present study is also meant to be a first step towards the application of the NNPDF

techniques to the determination of a set of polarized PDFs with a faithful error estimation.
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A Experimental errors

Experimentally, we have

A|| ≃
C

fPbPt

N− − N+

N− + N+
, (A.1)

where

• C is a nuclear correction that depends on the material the target is made of;

• f is the dilution factor which accounts for the fact that only a fraction of the target

nucleons is polarizable;

• Pb and Pt are the beam and target polarizations;

• N−(+) is the number of scattered electrons/muons per incident charge for negative

(positive) beam helicity.

Thus, most of the errors quoted by experiments are normalization errors.

• EMC [10]: A2 = 0 is assumed; 9.6% overall normalization due to beam and tar-

get polarization; multiplicative errors on R and f ; additive errors on A2, the false

asymmetry K and the radiative correction.

• SMC98 [11]: A2 = 0 is assumed; multiplicative errors on Pt, Pb, R, f and the

polarized background ∆Pbg; additive errors on A2, the false asymmetry ∆Afalse, the

radiative correction and the momentum resolution.

• SMC low-x [12]: A2 = 0 is assumed; multiplicative errors on Pt, Pb, R, f and the

polarized background ∆Pbg; additive errors on A2, the false asymmetry ∆Afalse and

the radiative correction.

• E143 [13]: g2 is evaluated using the Wandzura-Wilczeck relation

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

dy

y
g1(x,Q2) , (A.2)

using and empirical fit of g1/F1 = axα(1 + bx + cx2)(1 + Cf(Q2)); multiplicative

errors on Pt, Pb, f and the nuclear correction C which account for a total 3.7% for

the proton and 4.9% for the deuteron; additive uncorrelated error on the radiative

corrections.

• E155 [14]: g2 is evaluated in the same way of E143, but the parameters of the fitted

functional form have different values; we will add as a shift the difference between

A1 and g1/F1; multiplicative errors on Pt, Pb, f and the nuclear correction C which

account for a total 7.6% for the proton; additive uncorrelated error on the radiative

corrections.
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• HERMES06 [15]: a parametrization for g2 is fitted to existing data; normalizations

errors of 5.2% for the proton and 5% included in the systematic quoted for each data

point; additional additive error on the parametrization used for g2.

• COMPASS [16]: A2 = 0 is assumed; multiplicative errors on Pt, Pb, the dilution

factor f and the depolarization factor D; additive errors on the false asymmetry and

the radiative correction.
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